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Abstract

Learning multi-organ segmentation from multiple partially-
labeled datasets attracts increasing attention. It can be a
promising solution for the scarcity of large-scale, fully la-
beled 3D medical image segmentation datasets. However, ex-
isting algorithms of multi-organ segmentation on partially-
labeled datasets neglect the semantic relations and anatomical
priors between different categories of organs, which is cru-
cial for partially-labeled multi-organ segmentation. In this pa-
per, we tackle the limitations above by proposing the Cross-
Class Query Network (CCQ). CCQ consists of an image en-
coder, a cross-class query learning module, and an attentive
refinement segmentation module. More specifically, the im-
age encoder captures the long-range dependency of a single
image via the transformer encoder. Cross-class query learn-
ing module first generates query vectors that represent se-
mantic concepts of different categories and then utilizes these
query vectors to find the class-relevant features of image rep-
resentation for segmentation. The attentive refinement seg-
mentation module with an attentive skip connection incor-
porates the high-resolution image details and eliminates the
class-irrelevant noise. Extensive experiment results demon-
strate that CCQ outperforms all the state-of-the-art models
on the MOTS dataset, which consists of seven organ and tu-
mor segmentation tasks. Code is available at https://github.
com/Yang-007/CCQ.git

Introduction
Medical image segmentation is often an essential first step
of computer-aided detection (Litjens et al. 2017). Automated
segmentation of multiple abdominal organs on computed to-
mography (CT) is of great help to clinical applications such
as surgery and radiotherapy. Algorithms of multi-class seg-
mentation of abdominal organs (Gibson et al. 2018; Xie
et al. 2021) rely on fully-labeled datasets with human an-
notations for several organs. However, the full annotation of
medical images is extremely expensive and time-consuming
since it needs to be created and checked by professional ra-
diologists, which leads to the scarcity of large-scale, fully-
labeled datasets, especially for 3D medical image segmenta-
tion of abdominal organs. Several partially-labeled datasets

*These authors contributed equally.
†Corresponding author.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Illustration of partially labeled multi-organ and tu-
mor segmentation.

are available, e.g., LiTS (Bilic et al. 2019) with liver or-
gan and tumor, KiTS (Heller et al. 2019) with kidney organ
and tumor, Colon (Simpson et al. 2019) with colon tumor,
Lung (Simpson et al. 2019) with lung tumor, Spleen (Simp-
son et al. 2019) with spleen organ, Pancreas (Simpson et al.
2019) with pancreas organ and tumor, and Hepatic Ves-
sel (Simpson et al. 2019) with hepatic vessel organ and
tumor. Therefore, learning multi-organ segmentation from
multiple partially-labeled datasets becomes a promising so-
lution and attracts increasing attention. An illustration of
partially-labeled datasets is shown in Figure 1.

Existing approaches of multi-organ segmentation over
partially-labeled datasets can be roughly divided into two
types based on their designing principles: multiple sepa-
rate models for different organs (Ledig et al. 2015; Wang
et al. 2021; Kushnure and Talbar 2021; Wardhana et al.
2021) and a single model for multiple organs (Chen, Ma,
and Zheng 2019; Fang and Yan 2020; Shi et al. 2021; Zhou
et al. 2019; Liu, Xiao, and Zhou 2021; Dmitriev, Kaufman
et al. 2019; Zhang et al. 2021). The former is not only
time-consuming and memory-intensive but neglects anatom-
ical priors (Zhou et al. 2019) which are crucial for accu-
rate segmentation. In this paper, we focus on the latter.
Specifically, it is challenging to learn a single multi-organ
segmentation model based on the combination of several
partially-labeled datasets due to significant differences be-
tween diverse datasets and organs. To alleviate such dif-
ferences and inconsistencies, we further explore the single
model approach for multiple organs and find two main di-
rections: first is class-relevant representation learning meth-
ods (Dmitriev, Kaufman et al. 2019; Chen, Xu, and Koltun
2017) and second is non-class-relevant representation learn-
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ing methods (Fang and Yan 2020; Chen, Ma, and Zheng
2019; Zhang et al. 2021). Non-class-relevant representation
learning methods like TAL (Fang and Yan 2020), Multi-
Head (Chen, Ma, and Zheng 2019) and DoDNet (Zhang
et al. 2021) do not learn the class-relevant representation of
the input image even though they utilize class information.
We focus on class-relevant representation learning methods
in this study.

Class-relevant representation learning methods (Dmitriev,
Kaufman et al. 2019; Chen, Xu, and Koltun 2017) embed the
class information into their representation of images to per-
form class-conditional encoding or decoding. However, their
embeddings of different organs are independent, which ne-
glects the explicit semantic relations and anatomical priors
(e.g., relative locations and sizes) between different classes
of organs. Such relations and priors are particularly crucial
for partially labeled multi-organ segmentation.

To address these issues mentioned above, we propose a
Cross-Class Query network (CCQ), which focuses on em-
bedding the class relations between multi-organ or tumors
and performing the attentive segmentation over partially la-
beled CT abdominal datasets by generating learnable query
vectors that represent semantic concepts of different cate-
gories of organs. CCQ consists of three modules: image en-
coder, cross-class query learning, and attentive refinement
segmentation. Specifically, image encoder captures the im-
age features with the long-range dependency via the hybrid
of CNN encoder and Transformer, leading to more effec-
tive image representation. Second, cross-class query learn-
ing module first learns the cross-class semantic concepts
over different organ and tumor tasks via constructing a set of
learnable vectors, then generates class-relevant query vec-
tors by incorporating class information and capturing the
relations among semantic concepts via transformer self-
attention. Cross-class query learning takes the class-relevant
query vectors as queries of the attention module to query the
image representation and obtains class-relevant representa-
tion for segmentation. Third, attentive refinement segmenta-
tion module decodes the class-relevant representation to seg-
mentation results via attentive refinement segmentation, in-
corporating high-resolution image details without introduc-
ing the class-irrelevant noise.

Our contributions are summarised as follows:

• To the best of our knowledge, we are the first to model
cross-class semantic concepts for multiple classes in
medical image segmentation. Cross-Class Query net-
work (CCQ) focuses on generating class-relevant query
vectors by incorporating class information and capturing
the relations among semantic concepts. These semantic
concepts, relations, and anatomical priors contribute sig-
nificantly to fully understanding and utilizing partially la-
beled medical image segmentation.

• We propose an attentive refinement segmentation to
incorporate high-resolution image details into low-
resolution. And we apply class-relevant semantic queries
to generate high-resolution semantic segmentation re-
sults without introducing the class-irrelevant noise to im-
prove segmentation accuracy.

• Extensive experiment results demonstrate that CCQ out-
performs all the state-of-the-art models on the MOTS
dataset consisting of seven organ and tumor segmenta-
tion tasks.

Related Work
Partially Labeled Medical Image Segmentation. Accu-
rate segmentation of multiple organs and tumors is essen-
tial for clinical practice. Many pioneering works have been
proposed for multi-organ or multi-tumor segmentation in
a fully-labeled setting where manual annotations for mul-
tiple organs or tumors are available (Gibson et al. 2018;
Xie et al. 2021). They are mainly based on fully convo-
lutional semantic segmentation frameworks of natural im-
ages (Ronneberger, Fischer, and Brox 2015) and apply prior
knowledge to achieve better multi-organ segmentation, e.g.,
statistical fusion from different views (Wang et al. 2019),
complementary learning of extra distance maps and con-
tour maps (Navarro et al. 2019), and local structure exploita-
tion via attention mechanism (Schlemper et al. 2019). How-
ever, most public datasets are partially labeled where not all
organs but a few organs are labeled because fully-labeled
annotation is expensive and time-consuming. Existing ap-
proaches of multi-organ segmentation over partially-labeled
datasets can be roughly divided into two types based on
their designing principles: multiple separate models for dif-
ferent organs (Ledig et al. 2015; Wang et al. 2021; Kush-
nure and Talbar 2021; Wardhana et al. 2021) and a single
model for multiple organs (Chen, Ma, and Zheng 2019; Fang
and Yan 2020; Shi et al. 2021; Zhou et al. 2019; Liu, Xiao,
and Zhou 2021; Dmitriev, Kaufman et al. 2019; Zhang et al.
2021). Learning multiple separate networks for multiple par-
tially labeled datasets (Ledig et al. 2015; Wang et al. 2021;
Kushnure and Talbar 2021; Wardhana et al. 2021) is intu-
itive. However, such a strategy of separate learning is time-
consuming and memory-intensive, more importantly, it ne-
glects natural anatomical priors (Litjens et al. 2017; Zhou
et al. 2019). In this study, we focus on building a single net-
work for multiple partially labeled datasets.
Class-Relevant Representation Learning for Multiple
Organs. Some recent works for partially labeled segmen-
tation focus on training a single network for multiple par-
tially labeled datasets and exploring the task via multi-task
learning. There are two main directions for constructing the
single model approach for multiple organs: first is class-
relevant representation learning methods (Dmitriev, Kauf-
man et al. 2019; Chen, Xu, and Koltun 2017) and second
is non-class-relevant representation learning methods (Fang
and Yan 2020; Chen, Ma, and Zheng 2019; Zhang et al.
2021). Non-class-relevant representation learning methods
like TAL (Fang and Yan 2020), Multi-Head (Chen, Ma,
and Zheng 2019) and DoDNet (Zhang et al. 2021) don’t
learn the class-relevant representation of the input image
even if they though utilize class information. Most works
use a multi-head architecture which is applied by sharing
the encoder or backbone between all organs while keep-
ing several organ-specific decoders (Chen, Ma, and Zheng
2019) or last segmentation layers (Fang and Yan 2020; Shi
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Figure 2: An overview architecture of the proposed Cross-Class Query network (CCQ). The gradient color blocks with pink and
white are used to represent the class-relevant query vectors, where pink represents the semantic concepts and white represents
class-relevant information.

et al. 2021). In particular, the target adaptive loss (Fang
and Yan 2020) and marginal loss (Shi et al. 2021) are pro-
posed for training each assigned task by blending the label
of other tasks with the background, respectively. In addition
to multi-head networks, some other approaches are also in-
troduced. PaNN (Zhou et al. 2019) applies the prior infor-
mation counted by a fully labeled dataset to help train the
model on partially-labeled datasets. Liu et al. (Liu, Xiao,
and Zhou 2021) apply the strategy of incremental learning
to train a multi-organ segmentation model step by step. At
each step, a new single labeled dataset is fed into the model.
DoDNet (Zhang et al. 2021) generates a conditional convo-
lution block via task information to perform dynamic seg-
menting.

As for class-relevant representation learning methods, we
find learning the class-relevant representation of the input
image is very crucial to guide the encoder or decoder in the
architecture to perform class-relevant segmentation. To learn
the class-relevant representation of the input image, some
works (Chen, Xu, and Koltun 2017; Dmitriev, Kaufman
et al. 2019) encode the class information into encoder/de-
coder. Cond-Enc (Chen, Xu, and Koltun 2017) incorporates
the class information with the input image representation.
Dmitriev et al. (Dmitriev, Kaufman et al. 2019) encode the
class-relevant information as a part of the intermediate acti-
vation signals between the convolution layer and the non-
linear layer to achieve multi-class segmentation learning
from several single-class datasets.

However, they neglect the explicit relation between or-
gans, tumors, and organs and tumors of different classes.
We believe this prior relation (e.g., relative locations among
different organs and tumors) is crucial for multi-organ and
tumor segmentation. Unlike existing methods, we generate
class-relevant query vectors by incorporating class informa-
tion and capturing the relations among semantic concepts.

Problem Definition
The definition of learning a single model for multi-organ and
multi-tumor segmentation from partially-labeled datasets
is given as follows. Given K partially-labeled datasets
{D1,D2, · · · ,DK}, where k is the index of k-th dataset, it
is defined as the task ID in this paper. The categories of the
organs are not overlapped between different datasets. There-
fore, each task ID indicates one class of an organ. For sim-
plicity of demonstration, we only introduce organs here, and
the tumors can be easily included in the datasets by defining
new task IDs for tumors. The k-th dataset Dk = {(Xk;Y k)}
contains a set of input images Xk = {xk

i }
Nk
i=1 and corre-

sponding segmentation masks Y k = {yk
i }

Nk
i=1, where Nk is

the number of samples in dataset Dk. Each voxel in yk
i is bi-

nary where 0 represents the background and 1 represents the
organ. Given a task ID k̂ and an input image x̂ ∈ RD×H×W ,
where H ×W is the size of each slice and D is the number
of slice, our goal is to predict the corresponding mask ŷ.

Method
The overall architecture of Cross-Class Query network
(CCQ) is shown in Figure 2. It contains three modules of
the image encoder, cross-class query learning and attentive
refinement segmentation, each of which will be introduced
in an individual subsection.

Image Encoder
As shown in Figure 2, we utilize a CNN-Transformer hybrid
to extract the image features and long-range dependency of
the input image. Specifically, given an input image, we uti-
lize the CNN encoder to extract its feature maps in multi-
ple levels and denote the feature map at the last layer as
F ∈ R D

16×
H
16×

W
16×C , where C is the number of channels.

F represents the local semantic features of the input image.
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Figure 3: The detailed architectures of main modules in
CCQ. (a) Cross-Class Query Generation, (b) Single-Class
Focused Querying, (c) Weight and (d) Attention. ⊙ is the
element-wise multiplication and ⊕ is the element-wise ad-
dition.

We next obtain the features F enc with the long-range de-
pendency by utilizing the self-attention layer of Transformer
(TSA) (Vaswani et al. 2017) to encode the local features.

We first tokenize F to F T ∈ RN×C as the input of trans-
former encoder, where N = D

16×
H
16×

W
16 . Then, we compute

F enc ∈ RN×C from the image tokens F T as follows,

F sp = F T + P ,

F enc = TSA(F sp),
(1)

where P ∈ RN×C is learnable positional embedding (De-
vlin et al. 2019), and TSA is the self-attention layer of Trans-
former (Vaswani et al. 2017).

Cross-Class Query Learning
As shown in Figure 2, Cross-Class Query Learning consid-
ers the semantic relations and anatomical priors between
different tasks (i.e., categories of organs), which is crucial
for partially-labeled multi-organ segmentation. Cross-Class
Query Learning consists of two modules, i.e., Cross-Class
Query Generation and Single-Class Focused Querying. (1)
Cross-class query generation module first learns the cross-
class semantic concepts over different organ and tumor tasks
via constructing a set of learnable vectors. Then, it gener-
ates class-relevant query vectors by incorporating class in-
formation and capturing the relations among semantic con-
cepts via transformer self-attention. (2) Single-class focused
querying module adopts query vectors from the cross-class
query generation module to find the class-relevant features
for segmentation.

Cross-Class Query Generation. As shown in Figure 2,
Cross-Class Query Generation module first learns the cross-
class semantic concepts Qsem that represent the diversified
concepts of different classes of organs. Semantic concepts
are distinguishable, high-level representations of various se-
mantics (e.g., categories, location, and shape) of organs and
tumors. Each concept represents a distinct region in the se-
mantic space. Then, it generates class-relevant query vectors
Qenc by incorporating class information and capturing the
relations among semantic concepts via the TSA.

Inspired by the fixed small set of learned object queries of
DETR (Zhu et al. 2020), we first construct a set of learnable
semantic concepts Qsem ∈ RNq×C , where Nq is the number

of these semantic concepts. Here, semantic concepts are sup-
posed to learn the semantic representations for all the organs
and are the same for all samples, which can be considered
as a semantic codebook. After obtaining semantic concepts
Qsem, we also get the learnable task token [TEB]k̂ ∈ R1×C

corresponding to task ID k̂. Qsem and [TEB]k̂ are learn-
able vectors, they are randomly initialized at the beginning
of training and optimized via gradient descent and backprop-
agation during training. Next, we capture the relations be-
tween semantic concepts Qsem and the learnable task token
[TEB]k̂ via the TSA as follows,

Qenc = TSA([[TEB]k̂;Qsem]), (2)

where [; ] is concatenation operation. The encoded query
vectors Qenc ∈ RNq×C are not only class-relevant but also
be encoded with the relations between classes. For exam-
ple, given a specific category of an organ (e.g., Liver), the
class-relevant query vectors Qenc are the semantic concepts
relevant to the specific category, which are generated by
capturing the relations between the category and semantic
concepts Qsem. The detailed architecture is shown in Fig-
ure 3(a).

Single-Class Focused Querying. For a given image, the
Single-Class Focused Querying module finds the class-
relevant features of each class. As shown in Figure 2, af-
ter obtaining the class-relevant query vectors Qenc, we per-
form querying process in the image representation to find the
region of class-relevant features for segmentation. Specif-
ically, we adopt the cross-attention layer of Transformer
(TCA) (Zhu et al. 2020) to compute the class-relevant im-
age features Qdec ∈ RNq×C . The class-relevant query vec-
tors Qenc serves as the query, and F cp works as the key
and value in the cross-attention mechanism. The computa-
tion process is formulated as follows,

F cp = [Qenc;F enc + P ],

Qdec = TCA(Qenc,F cp),
(3)

where [; ] is concatenation operation, and the F cp encodes
the query vectors, the image features, and position informa-
tion of image features. The detailed architecture is shown in
Figure 3(b).

After performing the class-relevant query from the class-
relevant query vectors to the image representations, the vi-
sual cues corresponding to the query are obtained. Note that,
to further capture the relations between tasks, we addition-
ally concatenate the query vectors to image representations
to form the queried vectors in Eq. 3, which guides the cross-
attention to capture the intra-relation among class-relevant
query vectors.

Attentive Refinement Segmentation
We perform attentive refinement approach to predict the seg-
mentation results by incorporating the class-relevant query
vectors Qenc, class-relevant features Qdec, task ID k̂ and
the feature maps via the attentive skip connection.

First, to better utilize the task information, we weight
class-relevant features via the learnable task token [TEB]k̂
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of the task k̂ and query vectors Qenc, and the computation
of weighted query vectors Qw ∈ RNq×C is as follows,

Qw = σ(FC([Qdec;Qenc; [TEB]k̂]))⊙Qdec, (4)

where FC is the linear projection, σ is the sigmoid activa-
tion function, [; ] is concatenation operation and ⊙ is the
element-wise multiplication. The detailed computation of
Qw is shown in Figure 3(c). The Qw ∈ RNq×C is then
linearly projected and reshaped to Qd ∈ R D

16×
H
16×

W
16×C to

match the input of the CNN decoder.
Next, we utilize the skip connections from CNN encoder

to help the CNN decoder to restore the complete spatial res-
olution of the Qd (Drozdzal et al. 2016). The input of the
CNN decoder of CCQ is class-relevant, where skip connec-
tions from class-irrelevant CNN encoder mislead the decod-
ing segmentation. To eliminate the class-irrelevant noise, we
modify the skip connection by performing the extra attention
between the feature map U in each layer of CNN decoder
and its corresponding skip connection S. Specifically, we
compute the attentive feature Sa as follows,

Sa = σ(Conv1×1×1([U ;S]))⊙ S + S, (5)

where [; ] is concatenation operation, σ is the sigmoid acti-
vate function and Conv1×1×1 is a CNN block with kernel
size of 1× 1× 1. The detailed architecture is shown in Fig-
ure 3(d).

Finally, we add every attentive skip connection with its
corresponding feature map in CNN decoder for segmenta-
tion.

Loss Function
Following previous methods (Zhang et al. 2021; Chen, Xu,
and Koltun 2017; Dmitriev, Kaufman et al. 2019), we use
Dice loss and binary cross-entropy (BCE) loss for training.
Specifically, given the prediction y, ground truth mask ŷ and
voxel number V , our loss function is formulated as follows.

L = 1−
2
∑V

i=1 yiŷi∑V
i=1(yi + ŷi + ϵ)

−
V∑
i=1

(ŷi log yi + (1− ŷi) log(1− yi)),

(6)

where yi ∈ y and ŷi ∈ ŷ are each voxel in them.

Experiment
Experiment Setup
Dataset. We evaluate the proposed CCQ on the large-
scale, partially-labeled MOTS (Zhang et al. 2021) dataset,
which consists of seven 3D medical image segmenta-
tion datasets of abdominal organs and tumors, includ-
ing LiTS (Bilic et al. 2019), KiTS (Heller et al. 2019),
Colon (Simpson et al. 2019), Lung (Simpson et al. 2019),
Spleen (Simpson et al. 2019), Pancreas (Simpson et al.
2019) and Hepatic Vessel (Simpson et al. 2019) from Med-
ical Segmentation Decathlon (MSD) (Simpson et al. 2019).
MOTS contains total 1155 3D abdominal CT scans. For a
fair comparison, we follow previous methods (Zhang et al.

2021; Chen, Xu, and Koltun 2017; Dmitriev, Kaufman et al.
2019), to split the dataset, including the same 920 scans
for training, 235 for testing. All the scans are re-sampled
to 1.5× 0.8× 0.8mm3. The CT intensity values are linearly
normalized to [−1, 1] with the window of [−325, 325].

Metrics. Dice similarity coefficient (Dice) and Hausdorff
distance (HD) are used as evaluation metrics to evaluate the
models. The former evaluates the coincidence degree be-
tween the prediction and the ground-truth, while the latter is
the maximum value of the shortest distance from the point
in prediction to the point in the ground-truth, which detects
the quality of prediction boundaries.

Training and Inference. The optimizer of stochastic gra-
dient descent (SGD) with a momentum of 0.99 is used to
optimize the network. The learning rate is set to 0.01 with
0.9 decay. We randomly obtain the sub-volume with a size
of 64× 192× 192 of every input image in the training stage
and use the sliding window with the same size in the pre-
diction stage. All models are trained in a workstation with 4
Tesla V100 GPUs.

Comparison with State-of-the-Arts
We compare the proposed model with the state-of-the-
art models (SOTAs). These methods are divided into two
main types: class-relevant representation learning meth-
ods and non-class-relevant representation learning meth-
ods. The non-class-relevant representation learning meth-
ods include the individual networks respectively trained
on seven partially-labeled datasets (i.e., Multi-Nets), two
multi-head networks (i.e., TAL (Fang and Yan 2020), Multi-
Head (Chen, Ma, and Zheng 2019)), and dynamic head net-
work (i.e., DoDNet (Zhang et al. 2021)). The class-relevant
representation learning method includes Cond-Enc (Chen,
Xu, and Koltun 2017), Cond-Dec (Dmitriev, Kaufman et al.
2019) and our CCQ. For a fair comparison, we strictly fol-
low the experimental setting of SOTAs and use the same
backbone (i.e., 3D UNet) as theirs. The comparison results
are presented in Table 1.

Overall Performance. Our CCQ improves the SOTAs by
+1.73% and −7.59 in terms of the average Dice and av-
erage HD, respectively, compared with the existing best
class-relevant representation learning method (i.e., Cond-
Enc (Chen, Xu, and Koltun 2017)). Our CCQ also out-
performs the existing best non-class-relevant representa-
tion learning method (i.e., DoDNet (Zhang et al. 2021)) by
+0.77% and −2.7 in terms of the average Dice and aver-
age HD, respectively. The results demonstrate the effective-
ness of CCQ for the partially-labeled multi-organ and tu-
mor segmentation. More specifically, compared with Cond-
Enc (Chen, Xu, and Koltun 2017), CCQ achieves the top one
in 18 of 24 indicators (i.e., Dice and HD on every task, aver-
age Dice and HD on all tumor tasks, organ tasks, and tumor
and organ tasks), showing the consistent improvement of our
method over different organs and tumors.

Challenging Tumor Segmentation. Thanks to the se-
mantic relations modeling between categories of the or-
gans or tumors, our CCQ improves significantly for the
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Methods
Average Lung Spleen Hepatic Vessel Colon

Dice HD Dice HD Dice HD Dice HD Dice HD
Tumor Tumor Organ Organ Organ Tumor Organ Tumor Tumor Tumor

Non-Class-Rep:
Multi-Nets 71.67 28.95 54.51 53.68 93.76 2.65 63.04 72.19 13.73 50.70 34.33 103.91
TAL 73.35 23.56 61.85 39.92 93.01 3.10 61.90 72.68 13.86 43.57 48.08 66.42
Multi-Head 74.55 26.22 64.75 34.22 94.01 3.86 59.49 69.64 19.28 79.66 50.89 59.00
DoDNet 75.64 19.50 71.25 10.37 93.91 3.67 62.42 73.39 13.49 53.56 51.55 58.89
Class-Rep:
Cond-Enc 74.68 24.39 60.29 58.02 93.51 4.32 62.17 73.17 13.61 43.32 51.43 44.18
Cond-Dec 72.71 29.63 57.68 53.27 90.14 6.52 61.29 72.46 14.05 65.57 51.80 63.67
Our CCQ 76.41 16.80 70.51 11.04 94.57 2.71 62.50 76.94 13.86 20.76 54.77 57.88

Methods
Liver Pancreas Kidney

Dice HD Dice HD Dice HD
Organ Tumor Organ Tumor Organ Tumor Organ Tumor Organ Tumor Organ Tumor

Non-Class-Rep:
Multi-Nets 96.61 61.65 4.25 41.16 82.53 58.36 9.23 26.13 96.52 74.89 1.79 11.19
TAL 96.18 60.82 5.99 38.87 81.35 59.15 9.02 21.07 95.95 75.87 1.98 15.36
Multi-Head 96.75 64.08 3.67 45.68 83.49 61.22 6.40 18.66 96.60 79.16 4.69 13.28
DoDNet 96.87 65.47 3.35 36.75 82.64 60.45 7.88 15.51 96.52 77.59 2.11 8.91
Class-Rep:
Cond-Enc 96.68 65.26 6.21 47.61 82.53 61.20 8.09 31.53 96.82 78.41 1.32 10.10
Cond-Dec 95.27 63.86 5.49 36.04 77.24 55.69 17.60 48.47 95.07 79.27 7.21 8.02
Our CCQ 96.71 64.32 3.73 31.22 83.18 60.54 7.20 30.07 96.68 79.82 1.44 4.89

Table 1: The comparison of segmentation accuracy (higher is better for Dice, while lower is better for HD) of state-of-the-art
models on the MOTS dataset. “Average” is the aggregative indicator that averages the Dice or HD over 11 categories.

more challenging tumor segmentation of Hepatic Vessel and
Colon by considering their relations with the correspond-
ing organs as well as other organs. Particularly, CCQ out-
performs existing best-performing methods by +3.77% and
−22.56 in terms of Dice and HD on tumor segmentation of
Hepatic Vessel as CCQ captures the patch-level relevance
between the tumor and organ. Moreover, CCQ improves the
tumor segmentation accuracy of Dice on the Colon task by
a large margin, i.e., +2.97%.

Long-Range Dependency and Attentive Refinement.
The proposed CCQ can be adapted to organs of various
shapes and sizes as it incorporates long-range dependency
features. It is challenging to segment Pancreas and other or-
gans using a single-head conditional decoder because the
Pancreas, a fish-shaped spongy whose shape is very differ-
ent from other organs. Compared with Cond-Dec, our CCQ
with single-head conditional decoder achieves a significant
performance gain on pancreas segmentation by +5.94% on
Dice and −10.40 on HD, respectively. Also, CCQ outper-
forms all the single-head networks for pancreas segmenta-
tion. In addition to the long-range dependency, the proposed
attentive refinement segmentation can help to improve the
boundaries and details of segmentation, and CCQ improves
the average HD score by -7.59.

Ablation Study
To evaluate the effectiveness of Cross-Class Query Learn-
ing and Attentive Refinement Segmentation, we have trained
nine additional models for comparison. We randomly split
training scans into 80% (i.e., 744 scans) for training and the

Method Ave Dice Ave HD
w/o Q-Generation 68.89 35.02
w/o Querying 68.91 34.79
w/o Q-Fenc-Cat 71.39 29.26
Baseline 67.81 40.60
Baseline+IMG-Self-Attn 68.04 40.38
Baseline+IMG-Self-Attn+Attn-Skip 68.68 36.07
w/o Attn-Skip 70.02 32.60
Nq = 16 71.15 32.22
Nq = 64 71.44 26.63
CCQfull (Nq = 32) 72.38 27.69

Table 2: Ablation study of the proposed CCQ network using
Average (Ave) Dice (%) and Average (Ave) HD over 11 cat-
egories. Variants of the CCQ are based on different modules
and query numbers.

rest 20% for validation (i.e., 186 scans) in the ablation study.
Experiment results are presented in Table 2.

Cross-Class Query Learning Module. We compare the
CCQ with its three variants, and the results are shown
from row 1 to row 3 in Table 2. First, we evaluate the
necessity and effectiveness of relation modeling between
cross-class semantic concepts Qsem. We remove the Cross-
Class Query Generation module (“w/o Q-Generation”) and
the concatenation operation between query vectors Qenc
and image features F enc (“w/o Q-Fenc-Cat”), respectively.
The model “w/o Q-Generation” does not capture the re-
lations between semantic concepts Qsem, and the model
“w/o Q-Fenc-Cat” does not guide the cross-attention to cap-
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ture the intra-relation among class-relevant query vectors
Qenc. Compared to our full model, the performance degra-
dation of −3.49%, −0.99% on average Dice and +7.33,
+1.57 on average HD of the model “w/o Q-Generation”
and the model “w/o Q-Fenc-Cat” demonstrates that captur-
ing the relations between categories of organs is crucial for
partially-labeled multi-organ segmentation. After removing
the Single-Class Focused Querying module in our full CCQ
(i.e., “w/o Querying“), the performance loss of −3.47% on
Dice and +7.1 on HD shows that finding the class-relevant
features in the image for segmentation is significant.

Image Encoder & Attentive Refinement Segmenta-
tion. For a fair comparison, we choose the previous
method (Zhang et al. 2021) as our baseline. We add IMG-
Self-Attn (i.e., image transformer self-attention module) to
baseline and further replace the conventional skip connec-
tion with Attn-Skip (i.e., attentive skip connection) succes-
sively. The image transformer self-attention module cap-
tures the long-range dependency of the input image. The at-
tentive skip connection encodes the attentive details of the
image to the feature map in each layer of the CNN decoder.
As shown from row 4 to row 6 in Table 2, the baseline with
IMG-Self-Attn improves the performance by +0.23% and
−0.22 respectively on Dice and HD compared with the base-
line. Furthermore, adding the Attn-Skip further boosts the
performance by +0.64% and −4.31 on Dice and HD, re-
spectively. In addition, we also replace the conventional skip
connection in our full CCQ with Attn-Skip (i.e., ”w/o Attn-
Skip”), where our full CCQ outperforms the model (”w/o
Attn-Skip” ) by +2.36% and −4.91 on Dice and HD, respec-
tively. These results validate the effectiveness of our image
transformer self-attention module and attentive skip connec-
tion.

Number of Query Vectors. The experimental results of
query numbers Nq are shown in row 8 and row 9 of Ta-
ble 2. The model with Nq = 32 outperforms the model with
Nq = 16 by +1.23% on average Dice and −4.53 on aver-
age HD. The possible reason may be that 16 query vectors
are not enough to represent all classes. The model with 64
query vectors has a more accurate boundary (i.e., 1.06 mar-
gin on average HD) but less overall segmentation accuracy
(i.e., 1.23% margin on average Dice) than our full CCQ. It
is probably caused by some redundant vectors in 64 query
vectors which may bring the noise for the segmentation.

Visualization
We visualize the segmentation results obtained by our CCQ
and the DoDNet (Zhang et al. 2021) on seven tasks. The
results are shown in Figure 4, which demonstrate that our
model performs better localization and segmentation results
on organs and tumors.

Specifically, the proposed attentive refinement segmenta-
tion contributes to improving the boundaries and details of
segmentation and makes the segmentation masks on Liver
Organ & Tumor, Kidney Organ & Tumor, Lung Tumor and
Spleen Organ closer to the ground truth. Besides, CCQ im-
proves the tumor segmentation accuracy on the Colon task
since our CCQ can segment the Colon tumor with a small

Figure 4: Visualization of segmentation results obtained by
CCQ and DoDNet (Zhang et al. 2021).

size which is very challenging, while DoDNet misses the
small region. Moreover, CCQ can accurately locate and seg-
ment the tumor attached with the Hepatic Vessel, while
DoDNet predicts a wrong region. In addition, CCQ performs
a better segmentation result on the Pancreas organ, a fish-
shaped spongy extended horizontally across the retroperi-
toneum of the upper abdomen, which has a different shape
from other organs.

Conclusion
In this paper, we propose a Cross-Class Query Network
(CCQ) to model cross-class semantic concepts for multi-
ple classes in partially labeled organ segmentation. CCQ fo-
cuses on generating class-relevant query vectors by learning
a set of semantic concepts corresponding to semantic cate-
gories and capturing the relations among semantic concepts.
Class-relevant query vectors implicitly incorporate and cap-
ture the semantic relations and anatomical priors between
different classes of organs and tumors. To the best of our
knowledge, we are the first to propose cross-class semantic
concept modeling in medical image segmentation.

We also propose an attentive refinement segmentation
module to incorporate the high-resolution image details into
low-resolution. We apply class-relevant semantic queries
to generate high-resolution semantic segmentation results
without introducing the class-irrelevant noise, which im-
proves segmentation accuracy.

Extensive experimental results demonstrate that CCQ out-
performs all the state-of-the-art models on the MOTS dataset
which consists of seven organ and tumor segmentation tasks.
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